Shri Shankaracharya Institute of Professional Management \& Technology
Department of Computer Science \& Engineering
Class Test - II Session- July - Dec, 2022 Month-February Sem- CSE $3^{\text {rd }}$-A
Subject- Mathematics-III
Code- B000311(014)
Max Marks: 40
Time Allowed: 2 hrs
Note: - 1) Attempt any TWO from unit IV
2) Attempt any THREE from unit V

Shri Shankaracharya Institute of Professional Management \& Technology Department of Computer Science \& Engineering Class Test - II Session - July - Dec 2022 Month - February Semester - CSE III (B \& C) Subject - Mathematics III Code - B000311(014) Time Allowed: 2 Hours Maximum Marks: 40 Note: Solve Any 5 Questions				
$\begin{aligned} & \mathbf{Q} . \\ & \mathbf{N} . \end{aligned}$	Questions	Marks	Level of Bloom's Taxonomy	COs
1	(i) Find $L\left\{e^{-t} \int_{0}^{t} \frac{\sin t}{t} d t\right\}$ (i) (ii) Show that \int_{0}^{∞}	[4+4]	Applying	CO1
2	(i) Find inverse Laplace transform of $\frac{3 s}{s^{2}+2 s-8}$. (ii) Find inverse Laplace transform of $\cot ^{-1}(s+1)$	[4+4]	Applying	$\mathrm{CO1}$
3	Solve the following initial value problem $\frac{d^{2} y}{d t^{2}}+y=\sin 3 t, \quad y(0)=y^{\prime}(0)=0$.	[8]	Applying	CO1
4	(i) The probability density function of a continuous random variable $f(x)=\left\{\begin{array}{ll}\frac{k}{x^{3}}, & 5 \leq x \leq 10 \\ 0, & \text { Otherwise }\end{array}\right.$ Find value of k. (ii) Find the standard deviation for the following discrete probability distribution: $\begin{array}{cccccc} x: & 8 & 12 & 16 & 20 & 24 \\ p(x): & 1 / 8 & 1 / 6 & 3 / 8 & 1 / 4 & 1 / 12 \end{array}$ Do all the calculation for 2 decimal places.	[8]	Applying	CO3
5	The frequency of the accidents per shift in a factory is as shown below: Accidents per shift : 0 Frequency $:$ 180 92 24 Calculate mean number of accidents and fit 3 1 Do Calculations for 2 places of decimals.	[8]	Applying	CO3
6	Articles are classified in three categories, 60% are less than $50,35 \%$ are in the range $50-60$, and only 5% are greater than 60 . If this classification follows normal distribution, then find mean and standard deviation.	[8]	Applying	CO3

ShriShankaracharyaInstituteofProfessionalManagement \& TechnologyDepartment of Computer Science \& EngineeringClass Test - IIS ession- July - Dec, 2022Month-FebruarySem-CSE 3 ${ }^{\text {rd }}$ [A\&C]Subject-PrinciplesofProgrammingLanguages, Code-B022313(022)				
	imeAllowed: 2 hrs	MaxMarks: 40		
Note: -All questions are compulsory.				
Q.N.	Questions	Marks	Bloom'st axonomy	COs
A.	Explain the concept of object oriented programming language.	[8]	Understanding	CO 4
B.	Describe inheritance with its types.	[8]	Analyzing	CO 4
C.	Enumerate the overloading. Explain operator overloading.	[8]	Analyzing	CO 4
	Discuss the role exceptional handling in $\mathrm{C}++$.			CO 5
	Explain basic structure of $\mathrm{C}++$. With example.	[8]	Understanding	CO5
ShriShankaracharyaInstituteofProfessionalManagement\&TechnologyDepartmentof Computer Science\&EngineeringClass Test - IISession- July - Dec, 2022Month-FebruarySem-CSE 3 ${ }^{\text {rd }}$ [A\&C]Subject-PrinciplesofProgrammingLanguages, Code-B022313(022)				
TimeAllowed:2 hrs Max Marks: 40		Max Marks: 40		
Note: -All questions are compulsory. . ${ }^{\text {a }}$ Levels of				
Q.N.	Questions	Marks	Bloom's taxonomy	COs
A.	Explain the concept of object oriented programming language.	[8]	Understanding	CO 4
B.	Describe inheritance with its types.	[8]	Analyzing	CO 4
C.	Enumerate the overloading. Explain operator overloading.	[8]	Analyzing	CO 4
D.	Discuss the role exceptional handling in $\mathrm{C}++$.	[8]	Applying	CO5
E.	Explain basic structure of $\mathrm{C}++$. With example.	[8]	Understanding	CO 5

ShriShankaracharyaInstituteofProfessionalManagement $\boldsymbol{\&}$ TechnologyDepartmentof Computer Science\&Engineering SsifM Sem-CSE $3^{\text {rd }}[\mathrm{B} \mid$ Subject-PrinciplesofProgrammingLanguages, Code-B022313(022)				
TimeAllowed: 2 hrs MaxMarks: 40 Note: -All questions are compulsory.				
Q.N.	Questions	$\begin{gathered} \text { Mark } \\ \mathrm{s} \end{gathered}$	Levelsof Bloom'stax onomy	COs
A.	Explain Pseudo Code and Flow Chart With Example.	[8]	Understanding	CO 1
B.	Describe Modules And Modularization Criteria.	[8]	Analyzing	$\mathrm{CO1}$
C.	Explain The Programming Structure Of LISP.	[8]	Understanding	CO3
D.	Differentiate Between Functional and Imperative Programming Language.	[8]	Analyzing	CO3
E.	Describe the various Characteristics of Programming Language	[8]	Understanding	CO 2

> ShriShankaracharyaInstituteofProfessionalManagement \&TechnologyDepartmentof Computer Science\&Engineering
> Class Test - IISession- July - Dec, 2022Month-February
> Sem-CS3 ${ }^{\text {rd }}[$ B]Subject-PrinciplesofProgrammingLanguages, Code-B022313(022)

TimeAllowed: 2 hrs

Note: -All questions are compulsory.

Q.N.	Questions	$\begin{gathered} \text { Mark } \\ \mathrm{s} \end{gathered}$	Levelsof Bloom'stax onomy	COs
A.	Explain Pseudo Code and Flow Chart With Example.	[8]	Understanding	CO 1
B.	Describe Modules And Modularization Criteria.	[8]	Analyzing	CO 1
C.	Explain The Programming Structure Of LISP.	[8]	Understanding	CO 3
D.	Differentiate Between Functional and Imperative Programming Language.	[8]	Analyzing	CO 3
E.	Describe the various Characteristics of Programming Language	[8]	Understanding	CO 2

Shri Shankaracharya Institute of Professional Management \& Technology
Department of Computer Science \& Engineering
Class Test - II Session- July-Dec, 2022 Month- February
Sem- CSE $3^{\text {rd }}[A, B \& C]$ Subject- Data Structure \& Algorithms Code- B022312(022)
Time Allowed: 2 hrs Max Marks: 40

Note: - All questions are compulsory.				
Q.N.	Questions	Marks	Levels of Bloom's taxonomy	Cos
	Develop a Binary Tree from the given Inorder and Postorder Sequence. Inorder : D, B, F, E, A, G, C, L, J, K, H Postorder: D, E, F, B, G, L, J, K, H, C, A	$[8]$	Applying	CO3
Q2	Design prim's algorithm to find the minimum spanning tree of a graph. Explain it with suitable example.	$[8]$	Creating	CO4
Q3	Explain BFS and DFS(graph traversal algorithms) with suitable Example.	$[8]$	Applying	CO4
Q4	Create an AVL tree from the following data: $25,20,36,10,22,30, ~ 40, ~ 12, ~ 28, ~ 38, ~ 48 ~$	$[8]$	Creating	CO5
Q5	Create a B+ tree of order=5 from the following data: $48,53,60,69, ~ 57, ~ 74, ~ 110, ~ 119, ~ 78, ~ 83, ~ 120, ~ 129, ~ 154, ~ 190, ~ 88, ~$ 108,195	$[8]$	Creating	CO5

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering

Class Test - II Session-July-Dec, 2022 Month- February
Sem- CSE $3^{\text {rd }}$ Subject- Digital Electronics : B022314 (022) $-A+B+C$ Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt 1 question from each part. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
Part-A				
1.	Implement Full Adder Circuit using two 4:1 Multiplexer	[8]	Apply	CO 3
2.	Design 4 bit Priority Encoder	[8]	Create	CO 3

Part-B
1.

Implement logic diagram for T flip flop to D flip flop Converter.

$[8]$	Apply	CO 4
$[8]$	Remember	CO 4

Part-C

1.	Design MOD-6 Synchronous Counter using T flip flop	$[8]$	Create	CO4
2.	Design two input TTL NAND gate.	$[8]$	Apply	CO2
	Part-D			

1.	With neat diagram explain operation of 2 input CMOS NOR gate.	$[8]$	Apply	CO2
2.	Implement 3 bit binary to Gray code converter using PLA.	$[8]$	Apply	CO2
Part-E				
1.	Explain Mealy machine with Example	$[8]$	Remember	CO5
2.	Explain Moore Machine with Example	$[8]$	Remember	CO5

"The day you take complete responsibility for yourself, the day you stop making any excuse, that's the day you start to the top."

Shri Shankaracharya Institute of Professional Management \& Technology

Department of Computer Science \& Engineering

Class Test - II Session- July-Dec, 2022 Month-February Sem- CSE $3^{\text {rd } " C " ~ S u b j e c t-~ O p e r a t i n g ~ S y s t e m ~ C o d e-~ B 022315(022) ~}$

Time Allowed: 2 hrs Max Marks: 40
Note: - All questions carries 8 marks. Attempt any 5 questions.

Note: -	All questions carries 8 marks. Attempt any Questions	Marks	Levels of Bloom's taxonomy	Cos
Q1	Explain Bankers algorithm and Safty Algorithm with Pseudo Code.	[8]	Understanding	CO4
Q2	If the contents of refrence using is: $7,0,1,2,0,3,0,4,2,3,0,3$ and there are three frames available in the memory, then compare the performance of given algorithm in terms of page fault : 1) FCFS 2) Optimal page replacement 3) $L R U$	[8]	Applying	CO3
Q3	Illustrate the concept of address translation from logical to physical address.	[8]	Understanding	CO 3
Q4	Suppose that the head of a moving head disk with 200 track, 0 to 199 , is currently serving a request at 150 and has just finished request at 155 . The queue of request is kept in FIFO order $86,147,91,177,94,150,102,156,145$. What is the total number of head movement needed to specify these request for the following disk scheduling algorithms? 1) SSTF Scheduling 2) SCAN Scheduling	[8]	Applying	CO5
Q5	Describe virtual memory and explain the concept of demand paging?	[8]	Understanding	CO3
Q6	Describe Various file Accessing Methods with its advantags and disadvantages.	[8]	Analyzing	CO5

